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Distributed acoustic sensing (DAS) is a powerful tool thanks
to its ease of use, high spatial and temporal resolution, and
sensitivity. Growing demand for long-distance distributed
seismic sensing (DSeiS) measurements, in conjunction with
the development of efficient algorithms for data processing,
has led to an increased interest in the technology from indus-
try and academia. Machine-learning-based data processing,
however, necessitates tedious in situ calibration experiments
that require significant effort and resources. In this Letter, a
geophysics-driven approach for generating synthetic DSeiS
data is described, analyzed, and tested. The generated syn-
thetic data are used to train DSeiS classification algorithms.
The approach is validated by training an artificial neural-
network-based classifier using synthetic data and testing its
performance on experimental DSeiS records. Accuracy is
greatly improved thanks to the incorporation of a geophysi-
cal model when generating training data. © 2020 Optical
Society of America

https://doi.org/10.1364/OL.386352

Fiber-optic distributed acoustic sensing (DAS) is a cost-effective
technology for implementing acoustic signal acquisition in large
scales. In many applications, the detected signals are actually
seismic waves. This version of DAS is denoted here as distrib-
uted seismic sensing (DSeiS). During recent years, DSeiS has
been applied to a wide range of applications such as intrusion
detection, border and perimeter defense, leak detection in
pipelines, earthquake detection, transportation monitoring,
vertical seismic profiling, and more [1–3]. DAS is commonly
based on analysis of variations in the Rayleigh backscatter profile
of a sensing fiber. Acoustic and vibration signals in the vicinity of
the fiber affect the phase and amplitude of the measured profile.
Extracting the amplitude variations is relatively straightforward,
while obtaining reliable information from the phase measure-
ment is more challenging. The effort is worthwhile, however, as
phase signals are linearly related to the directional strain along
the sensing fiber [4].

Different approaches can be used to measure backscatter
profiles. The most common is the optical time domain reflec-
tometry (OTDR). In OTDR, a short pulse is launched into the
fiber, and position information is obtained from the round trip
time [1]. Another approach is optical frequency domain reflec-
tometry (OFDR). It uses chirped waveforms for interrogation,
and the locations are resolved according to their beat frequencies
[5]. There is no clear superior approach, and the choice between
them depends on the specific application.

Regardless of the interrogation method used, all DSeiS sys-
tems require significant testing and calibration efforts following
installation in a new site or seasonal/man-made changes in an
existing one. One of the primary roles of the calibration phase
is to collect sufficient experimental data to train machine learn-
ing detection and classification algorithms. Such efforts are
typically labor-intensive and therefore expensive. Therefore,
an alternative approach, utilizing the generative adversarial
network (GAN) [6] was proposed. It augmented a small amount
of experimental data into a sufficiently large training set [7].
However, this approach still necessitated the tedious training
phase of a complex neural network architecture, the GAN, as
opposed to training a common classification network.

In this study, we introduce a simple and efficient approach
for generating synthetic data for the training of DSeiS detection
and classification nets. Data are generated using a geophysical
model with uncertainty in the subsurface parameters. The
model accounts for travel time differences, amplitude decay,
and directionality effects due to uniaxial strain measurement,
and requires minimal computation efforts. The optical system
response as a result of the seismic excitation is also applied.
Without loss of generality, we assume an OFDR system.
Generated data are qualitatively compared to DSeiS records
acquired in field experiments.

The synthetic data is used to train an artificial neural network
(ANN) classifier. The trained network is then tested on exper-
imental recordings of footsteps, vehicle driving, and ambient
noise, and achieves 92.8% accuracy (namely, 92.8% of the test
set instances were correctly classified).

0146-9592/20/071834-04 Journal © 2020Optical Society of America

https://orcid.org/0000-0002-9841-6842
mailto:lihishiloh@mail.tau.ac.il
https://doi.org/10.1364/OL.386352
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.386352&amp;domain=pdf&amp;date_stamp=2020-03-18


Letter Vol. 45, No. 7 / 1 April 2020 /Optics Letters 1835

The method is based on a synthetic data generator which
is composed of two parts: an approximated geophysical for-
mulation of seismic wave propagation and an optical DAS
interrogator, which is an OFDR in this study but can be
straightforwardly adapted to an OTDR. The OFDR system
was simulated similarly to the procedure described in Ref.
[7]. The fiber-under-test’s profile was continually generated
with complex backscatter coefficients. Its profile was divided
into segments of 0.5 m each, randomly drawn from a nor-
mal distribution simulating Rayleigh backscattering. Optical
loss (0.2 dB/km) and noise sources, such as shot and phase
noise, were added to the signal to match the experimental data
characteristics. The seismic event signature, described in the
following paragraph, was added as an additional phase to the
fiber profile. The backscatter signal at the input of the coherent
photo-receiver was obtained by convolving the fiber’s impulse
response with the linearly swept input waveform.

Accurately modeling seismic signatures is challenging, as
they depend on source parameters and subsurface properties,
which are both unknown. In addition, numerically solving
the 3D seismic wave equation is computationally demanding,
and building a sufficiently large training dataset would require
extensive resources. Therefore, we employ a more straightfor-
ward approach. The source’s signature is directly estimated from
the data. Seismic sources excite mostly surface waves (∼ 90% of
energy), and we thus focus on such waves in our modeling. We
compute the travel times from the source location to the fiber
locations using seismic surface wave velocities measured in the
study area [8]. We assume a constant subsurface velocity for the
propagation. Measured velocities are randomized to account
for subsurface variation and errors in measurement. Signals
are shifted in phase according to the computed source-receiver
travel times. Due to their cylindrical propagation, surface wave
amplitudes decay as one over the square root of distance in an
ideal homogeneous half-space. However, to account for strong
elastic scattering present in the shallow subsurface, we approxi-
mate their decay as one over the distance. In addition, we apply
a constant anelastic Q-factor dissipation [9]. We only apply the
frequency amplitude decay component, as formulated in the
following equation:

H( f )= e−α0 f , α0 =
πd
Qv

, (1)

where d is the propagation distance, v is the surface wave veloc-
ity, and f is the frequency. Finally, fiber directivity has to be
accounted for. For a surface wave recorded in a straight fiber, the
strain-rate response is proportional to vk2 cos2 θ , where k is the
spatial wavenumber and θ is the angle between the propagation
direction and the fiber.

The baseline source parameters were chosen according to
their measured DAS seismic signatures. Footsteps were modeled
as wavelets with central frequencies uniformly distributed in
the range 10–20 Hz and with duration normally distributed
between 10 ms and 15 ms. Synthetic vehicles’ signals were cre-
ated by generating white Gaussian noise and filtering it to the
range 8–12 Hz, according to the power spectral density of the
experimental recordings. For subsurface parameters, we used
a value of Q = 5, which is representative of the area [10]. In
order to account for lateral velocity variations, propagation to
the right and left sides of the source is conducted with different
velocities randomly distributed in the interval [90,166] m/s. In

the experiment, the vertical distance between the fiber and the
source was 10 m. For better visualization of fine features in the
seismic signature, Figs. 2 and 3 show synthetic data computed
for sources at a distance of 5 m from the fiber. Clearly, adaptation
of the distributions of the parameters may be required for gener-
alizing the network to different circumstances. Nonetheless, our
proposed methodology provides efficient tools for such cases.

Field experiments were conducted with DSIT’s Lightline
OFDR interrogating system. The sensing fiber was a 700 m
long fiber buried ∼ 1 m underground, in an isolated field, and
scanned at a repetition rate of 768 Hz. The optical data were
sampled at 200 MHz, and the spatial resolution was ∼ 3 m.
Given the seismic velocities observed experimentally, such
spatial resolution means that seismic waves with temporal
frequencies > 15 Hz may be detected with some aliasing. This
fact, however, is accounted for in the proposed methodology,
as the same parameters of the interrogator and the ground were
also used by the synthetic data generator. Field experiments
included excitations, at the vicinity of the fiber, of an 80 kg
walking person and a driving Renault Kangoo vehicle.

The synthetic data generator was implemented in MATLAB,
and the training and testing of the NN were implemented in
Python using Keras backend (TensorFlow version 1.8) with
Intel core-i7 CPU, 32 GB RAM and an NVIDIA GeForce GTX
1080 Ti GPU (11 GB).

The simulation parameters of the optical interrogator were
adjusted according to the OFDR system used in the field. All
images presented in this Letter are waterfall representations of
the seismic events. The waterfalls show measured and simulated
optical differential phase, with the vertical axis as time and the
horizontal axis as the distance along the sensing fiber. The differ-
ential phase waterfalls are calculated along the distance axis and
filtered using FK-filters [11] for manuscript visibility only (not
used for classification). Colorbars are presented in radians.

An example of the experimental seismic signatures and the
corresponding synthetic generator results are presented in Fig. 1.
The right column in Fig. 1, panels (b) and (d), show examples
of experimental results, and the left panels (a) and (c), show
synthetic generated DSeiS results. Distinctive features are
observable, such as the wavefront propagation in time and dis-
tance, characteristic frequencies, amplitude decay with distance,
fiber directivity, and more.

Interestingly, the synthetic generator enabled the investiga-
tion of the effects of the various subsurface parameters on the
seismic signatures in the acquired DSeiS data. For this purpose,

Fig. 1. Optical differential phase of seismic signatures of a footstep
(first row) and a vehicle (second row). (a) and (c) are computer simula-
tions, and (b) and (d) are experimental results.
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the synthetic generator was fixed to the initial source parameters
previously determined, all random noise sources were disabled,
and only the subsurface parameter of interest was changed.
Without loss of generality and for visibility, a footstep signature
at a distance of 5 m from the fiber was used.

The effect of the subsurface velocity on the DSeiS signature
is presented in Fig. 2. As can be expected, the propagating wave-
front is visible, and its angle of propagation increases with the
velocity. This is due to the seismic wavefronts reaching the fiber
earlier. The time delay of arrival is determined by the Euclidean
distance from the event source to the location along the fiber,

τ =
√

D2 + x 2/v, (2)

where D is the vertical distance from the source to the fiber, and
x is the position along the fiber (2D simulation). Notice the
differences in time of arrival at a low velocity of v = 50 m/sec
[Fig. 2(a)], and a faster one of v = 100 m/sec [Fig. 2(b)]. They
follow the hyperbolic equation representing the Euclidean
distance. Since the source location is fixed at 5 m away from the
fiber, the difference in time of arrival to the closest fiber location
is 46.88 msec (calculated using signal cross correlation), while
the theory depicts a 50 msec difference. However, the signal’s
amplitude also depends on the propagation velocity. This is
due to anelastic losses as well as gauge length effects. The gauge
length effect can be described as an integration over different
spatial locations at each time sample, equivalent to the sensor’s
spatial resolution. For low velocities, wavefront slopes are steep,
and integration along the spatial dimension is incoherent. For
high velocities, slopes are gentler, and a more coherent inte-
gration occurs. In addition, slopes also depend on location
along the array—the integration is coherent near the apex of
the hyperbola (zero slope). This is not the case at the tails, which
tend towards a slope of x/v. This is why the hyperbolas with low
velocities have frequent phase changes, whereas those with high
velocities are more regular.

The effect of the Q-factor on the seismic signature is shown
in Fig. 3. As the Q value decreases, the seismic signal experiences
more propagation attenuation. This reinforces the suggestion
that DSeiS systems deployed in soil with large Q will improve
overall performances.

The influence of different event’s distance from the sensing
fiber is shown in Fig. 4. The event’s distance decreases the sig-
nature quality (notice the different colorbar ranges) and times

Fig. 2. Synthetic generation of a footstep. Influence of subsurface
wave velocity on DSeiS signature in a waterfall presentation of the
differential phase. (a) v = 50 m/s, (b) v = 100 m/s, (c) v = 200 m/s,
and (d) v = 300 m/s.

Fig. 3. Synthetic generation of a footstep. Influence of constant Q-
factor dissipation on DSeiS signature in a waterfall presentation of the
differential phase. (a) Q = 2, (b) Q = 5, (c) Q = 10, and (d) Q = 20.

of arrival, similar to the observations made based on Fig. 2.
Another useful feature is the signal absence around the apex of
the hyperbolas. As the seismic event originates at a horizontal
distance from the array, the propagating wavefront reaches
the closest fiber segment in a perpendicular orientation. Since
particle movement of surface waves is within their plane of
propagation, they do not induce strain along the direction of
the fiber. As a result, there is no phase shift of the interrogating
light, and there is no phase signal in the fiber segment closest
to the source. As the sensitivity of the fiber is proportional to
cos2 θ , the effective fiber segment that lacks sensitivity increases
with source distance. This intriguing result may be used for dif-
ferent applications and can, for example, help locate the source
relatively accurately.

To validate the similarity between synthetic and experimental
data, a classification network was trained on synthetic data only
and tested on experimental data. If the synthetic data include
distinctive seismic features applicable to the experimental data,
the network will learn them from the “free” synthetic seismic
signatures and succeed in classifying the costly experimental
ones.

In previous publications [7,12], an oversimplistic simulation
was used to easily obtain a large training set for the classifica-
tion network. This simulation did not include anelastic losses

Fig. 4. Synthetic generation of a footstep. Influence of event source
location from the fiber on DSeiS signature in a waterfall presentation
of the differential phase. (a) D= 0.01 m, (b) D= 5 m, (c) D= 10 m,
and (d) D= 20 m.
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and fiber directivity, and produced random classification per-
formance on the field experiment test data. However, it was
shown that training on an NN-refined simulation data achieved
good classification abilities. However, such training of a refiner
network, using GAN to transform simplistic synthetic data to
mimic real data, takes time and effort.

In this study, the same classification network is used but
trained on the synthetically generated dataset. While it describes
the seismic field more realistically, it still uses a high-frequency
ray approximation of seismic wave propagation, which com-
putes only surface Rayleigh waves, and does not account for
complex subsurface structures and topography.

The network is a convolutional neural network (CNN)
consisting of a modified version of Oxford’s VGG16 network
[13], with a two-channel input image. This input image is a
concatenation of the optical power and the differential phase
waterfall representation of a fiber segment (see Fig. 1). Each
image is a crop of 95.5 m segment and a 0.45 s time window.
This corresponds to an image of 80× 350 pixels, respectively.
The VGG16 convolution layers’ weights are initialized by the
ImageNet pretrained values, and the other layers are initialized
with random weights. All layers are trained. The input images’
channels were normalized, independently, to the range [−0.5,
0.5]. Table 1 details the full network architecture, previously
referred to as FiberNet [7].

A training database was constructed of 8306 synthetic
instances of each class: footsteps, vehicle driving, and ambient
noise. The test set comprised 305 experimental instances from
each class, manually labeled. For comparison, a similar database
was constructed based on the simplistic simulation detailed
in Ref. [7]. FiberNet was trained individually based on each
simulation database with a learning rate of 1e− 3 to 1e− 4,
data augmentation that included translation, flipping the image
along the fiber-distance axis, and addition of random noise. No
fine-tuning using experimental data was performed. The results
are summarized in Table 2. Due to the high SNR, classifica-
tion is achieved in both simulation methods. However, in the
old, overly simplistic simulation, random confusion is evident
between noise and vehicle. This may be attributed to the tempo-
ral continuity of the seismic signature of the vehicle combined
with the lack of seismic propagation features in the simplistic
simulation. Moreover, a high detection accuracy is only evident
for footsteps, which indicates an overfitted state. Using the new
synthetic generator, a definitive separation between all classes is
achieved, and an overall increase in performance is evident for all
classes with much fewer false alarms.

A detailed yet simplistic synthetic generator of seismic sur-
face wave propagation recorded by DSeiS is described. Data
generated through this scheme are representative of field DSeiS

Table 1. FiberNet Architecture

Layer Size In Size Out

Conv2D 350× 80× 2 350× 80× 3
VGG16 (13 conv.
layers with max
pooling)

350× 80× 3 20× 1× 512

FC1 (ReLU+ BN) 1× 10,240 1× 4096
FC2 (ReLU+ BN) 1× 4096 1× 4096
FC3 (ReLU+ BN) 1× 4096 1× 128
Logits (softmax) 1× 128 1× 3

Table 2. Classification Accuracy for a 5 km Fiber and
Three Classes over One Training Session (Noise,
Footsteps, and Vehicles)

Training Setup Accuracy Confusion Matrix

Old simulation
dataset

68.6% 58.3% 3% 38.7%
0% 94.7% 5.3%

46.6% 3.6% 52.8%

New synthetic
generator dataset

92.8% 93.4% 0% 6.6%
4.63% 91.1% 4.6%
5.9% 0.3% 93.8%

experiments, as shown by the success of a classification NN
that is trained on synthetic data and tested on field data. The
simulation parameters were estimated based on a small subset
of the experimental data. Classification between ambient noise,
footsteps, and driving vehicle was achieved with a 92.8% accu-
racy. This result proves that the presented seismic model can
be used for a first-order analysis of DSeiS systems and training
classification networks with minimal expenses of effort and
money.
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